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ABSTRACT 

Gestures are of particular interest as a HCI modality for navigation because 

people already use gestures habitually to indicate directions. It only takes a user to 

learn few customized gestures for a given navigational task, as opposed to other 

technologies that require changing hardware components and lengthy procedures. 

We propose an integrated gesture recognition based interface for people with upper 

extremity mobility impairments to control a service robot. The following procedure 

was followed to construct the suggested system. Firstly, quadriplegics ranked a set 

of gestures using a Borg scale. This led to a number of principles for developing a 

gesture lexicon. Secondly, a particle filter method was used to recognize hands and 

represent a generalized model for hand motion based on its temporal trajectories. 

Finally, a CONDENSATION method was employed to classify the hand trajectories 

into different classes (commands) used, in turn, to control an actuated device-a 

robot. A validation experiment to control a service robot to negotiate obstacles in a 

controlled environment was conducted and results were reported.  
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1 INTRODUCTION 

Carrying out an independent and autonomous life is deemed a basic need for 

people with mobility impairments (Cooper, Rninger, and Spaeth, 2006). According 

to the 2009 US Census Bureau News, 3.3 million people who are 15 or older use a 

wheelchair. Another 10.2 million use an ambulatory aid such as a cane, crutches or 

walker and 11 million disabled people need personal assistance with everyday 

activities. For adults 65 and older over 40% are reported to have some form of 

disability (U.S. Census Bureau News, 2009). Thus, the demand for more innovative 

assistive technology (AT) development is needed by a large elderly population and 

those with movement impairments.  

The rapid development of mobile distributed computing systems with effective- 

human-computer interfaces (HCI) is gaining more popularity (Jacko, 2011). 

Advanced HCI systems for people with mobility impairments, such as voice, facial 

and hand gesture based control have been developed where each modality acted 

alone for the control, or they were combined as multimodal interfaces (Moon, Lee, 

and Ryu, 2003). Such HCI systems have been used to control or operate wellness 

monitoring, caregiver assistance, in-home medical alert systems for elder care and 

intelligent wheelchairs (Scherer, Sax, and Vanbiervliet, 2005; Nguyen, Chahir, and 

Molina, 2010; Reale, Liu, and Yin, 2011 ). The use of hand gestures for navigation 

is an attractive alternative to otherwise cumbersome interfaces, such as joysticks, 

sip-and puff systems, and tongue controls (Huo and Ghovanloo, 2009). Gesture-

based HCI have become popular because they are ergonomic and can be designed to 

meet individual’s particular requirements. Gesture comes naturally to people and is 

a basic form for individuals to communicate with each other. While not every 

individual can use gestures, for those who are able to move their hands and upper 

arms to some degree, gesture-based HCI can be seen as an extremely promising 

alternative or complement to existing interface techniques.  

2 RELATED WORK 

There exists a number of works incorporating hand gestures through interfaces 

to control wheelchair, mobile robot and some other home devices. A hand-gesture 

based wheelchair navigation system was designed which tracked the hand in real 

time by using the combination of particle filtering and mean shift method (Shan, 

Wei, and Tan, 2004). However, it only took into account one hand tracking and only 

four gestures to control the wheelchair. An intelligent wheelchair control system 

based on hand gesture recognition was proposed, in which static hand gestures were 

recognized by employing Haar-like feature detector (Zhang, Zhang, and Luo, 2011).  

The commands used to control the wheelchair were generated by locating the static 

gesture in different regions in a window for each frame in the video sequence. The 

main problem with static hand gestures based control is that the users have to hold 

their hands in a fixed position for a period of time, which is exhausting when upper 

extremity impairments exist. A robotic smart house interface was designed to assist 



people with movement disabilities based on hand gesture, voice and body 

movements (Park, Bien, and Lee, 2007). The proposed system used ceiling-mounted 

CCD cameras to observe and recognize the user’s hand gestures and used these 

gestures to control robotic systems and other home-installed devices. But in their 

system, only pointing gestures were considered. A hand-gesture based control 

interface for navigating a car-robot was introduced in (Wu, Su, and Wang, 2010). 

They adopted the dynamic time warping algorithm to classify hand trajectories. 

Only six commands were considered for car-robot navigation. A natural interaction 

framework for programming a mobile robot with gestures was developed using two 

low-cost small mobile robots available on the market (Uribe, Alves, and Rosario, 

2011). A comparison between a joystick, wiimote and kinect based interfaces was 

made in the paper. However, the preliminary gestures selected for controlling the 

mobile robot required the user to hold their hands over their body for a period of 

time which made them feel tired during the experiments. 

3 SYSTEM ARCHITECTURE 

The architecture of this system is illustrated in Figure 1. First, a gesture lexicon 

was constructed. Subjects with upper extremity impairments were interviewed and a 

Borg scale (Borg, 1982) rankings were collected to set the guidelines for gestures 

selection. Detailed description and analysis is shown in sections 4 and 7. After data 

analysis, eight dynamic gestures were selected to be the components of the gesture 

lexicon. The hand gesture recognition system includes four parts: foreground 

segmentation, detection, tracking, and trajectories recognition. A detailed 

description of the system is shown in sections 5 and 7. 

 

(a) Gesture lexicon 



 

(b) Gesture recognition 

         Figure 1  System overview 

4 GESTURE  LEXICON 

When developing a gesture-based HCI for persons with upper extremity 

mobility impairments, the first step is to design a “gesture lexicon”. The gesture 

lexicon is a set of gestures that was determined from quadriplegic subjects using 

Borg scale metrics. The procedure for designing this lexicon involved first selecting 

a subset of gestures. This could be accomplished through technology-based 

approach or human-based approach (Cassell, 1998). The technology-based approach 

aims to select a set of gestures that can be easily recognized and classified by the 

system. The biggest problem for the technology-based approach is that gestures 

selected by this method are not user-centered, which may be difficult to relate to 

functions or difficult to perform, particularly for persons with upper limb mobility 

impairments. The human-based approach proposes to construct the gesture lexicon 

based on studying how people (who are the potential users) interact with each other. 

In our research, the target population is users with mobility impairments. In such a 

scenario, it is mandatory that the gestures will be ergonomic (easy to perform). To 

achieve this goal the human-based approach will be used for constructing the 

gesture lexicon. 

First, a preliminary lexicon including both dynamic and static gestures were 

shown and demonstrated through a video presentation to subjects with upper 

extremity impairments and they ranked these gestures employing the Borg scale. 

The dynamic gestures are hand and upper arm movements by which hand 

trajectories are generated. The static gestures are postures involving fixed hand and 

upper limb positions, but not incorporating sophisticated finger variation. 

Originally, the preliminary gesture lexicon is constructed with 50 dynamic gestures 



and 15 static gestures. Since the number of gestures that a user can remember is 

very limited, we limited the number of gestures. The reduced gesture lexicon 

includes 30 dynamic gestures and 10 static gestures. The gestures were reduced 

according to the following principles: 

(1) Similarity (Proctor and Zandt, 2008): if the trajectory of one gesture has 

very few differences from another gesture or has many common elements 

with another gesture, one of the gestures can be deleted. One example is 

the clockwise circle gesture and the P gesture. Both of their trajectories 

first go up and then go down as shown by Figure 2(a). The clockwise circle 

gesture was selected because it was more symmetric. 

(2) Redundancy (Yee, 2009): if the trajectory of one gesture contains part of 

the trajectory of another, this gesture is a redundant gesture of the other. 

For example: as shown by Figure 2(b) the start gesture (the left one) 

trajectory contains a Z gesture trajectory. Arbitrary the Z gesture was 

selected. 

(3) Minimize memory load (Nielsen, 1992): reduce gestures that are hard to 

remember, i.e. the sum gesture as shown by Figure 2(c). 

After reduction, the preliminary gesture lexicon includes single hand dynamic 

gestures in  both vertical plane and horizontal plane, two hand gestures in both 

vertical plane and horizontal plane (as shown in Figure 2(d)) and static gestures.     

 

                                                            

            (a) Reduction by similarity         (b) Reduction by redundancy       (c) Reduction by memory 

                                                

                                                     (d) Preliminary gesture lexicon components                                         

  Figure 2  Gesture lexicon         

5 GESTURE RECOGNITION 

The gestures in the lexicon were recognized by the system and the commands 

corresponding to each gesture were sent to service robot. Four procedures were 

followed to achieve the gesture recognition. Firstly, the whole human body will be 

treated as the foreground and segmented from the background (as shown by Figure 

3). Secondly, the hands are detected by using face detection and skin color 

histogram model. The results are shown as in Figure 4. A particle filter method was 



subsequently used to recognize the hands and represent human hand motion as 

temporal trajectories (as shown in Figure 5). Finally, dynamic velocity motion 

models for the gestures in the lexicon were constructed and CONDENSATION-

based trajectory recognition method was used to classify the hand trajectories into 

different classes. 

 

                 

                           (a)Depth Image      (b) Depth threshold mask    (c) Foreground mask                                    

Figure 3  Foreground segmentation 

                       

        (a)Face Detection    (b) Skin color detection   (c) Hand extraction         (d) Localization                         

Figure 4  Face and hand detection  

 

Figure 5  Face and hand tracking 

6 SERVICE ROBOT CONTROL 

The service robot controlled by the gestures recognition 

system is the TurtleBotTM robot from Willow garage® (as 

shown in Figure 6), which includes a mobile base, a Kinect 

3D sensor and a netbook with robot operation system 

(ROS) on a linux environment. TurtleBot was controlled 

through gesture commands. Two modes were used to 

control TurtleBot: discrete mode and continuous mode. In 

discrete mode, the robot moves every time that a command 

is issued, otherwise it stays still. While in the continuous 

mode, the robot responds to a given command, until the stop command is issued. To 

switch between these two modes one distinctive gesture is used.  

  

Figure 6 Turtlebot robot 



7 EXPERIMENTS 

7.1 Gesture lexicon construction 

One female with hemi-media in her left arm and two male subjects with upper 

extremity impairments were interviewed for data collection. One of the male 

subjects was a Cervical-4/5 quadriplegic, whose left arm had less movement than 

his right arm, which performed most of the gestures but no hand movement. During 

evaluation, both dynamic and static gestures were ranked by each subject from 20% 

effort to not possible according to the Borg scale. The 15-point Borg scale was 

chosen because it is more sensitive to the variation of effort subjects spent on each 

gesture. The subject was asked to perform each gesture, to describe the limitations 

and physical stress they experience, and then to rank the effort needed to perform 

the gesture on the Borg scale. Once the subjects finished all the 16 single hand 

dynamic gestures, 14 two hand dynamic gestures and 10 static gestures, their 

answers were summarized in a data sheet to help us develop the guidelines for hand 

movements and postures. 

According to the scored rankings on the Borg scale, eight dynamic gestures 

were selected as the optimal candidates for the gesture lexicon. They are upward, 

Downward, Rightward, Leftward, Z, Clockwise Circle, Counter Clock Circle, and S 

gesture in vertical plane (as shown in Figure 1(a)). The effort required to perform 

the selected dynamic gestures, discarded dynamic gestures, static gestures and two 

hand dynamic gestures are shown by the histogram in Figure 7. From the histogram, 

it can be seen that the selected dynamic gestures required the least effort, on 

average. 

 

Figure 7  Comparison between selected and discarded gesture groups 

ANOVA (Analysis of Variance) and T-test results were given to prove that there 

was significance difference between the different groups in terms of the effort 

required to perform the gestures. The mean for the selected dynamic gesture 

population is µ1, for the discarded dynamic gesture population is µ2, for the 

discarded static gesture population is µ3 and for the two hands dynamic gesture 

population is µ4. The hypotheses were that H0 states that there is no significant 

difference among the effort of the selected dynamic, discarded dynamic, static and 

two hand dynamic gesture population, while H1 states that there is significant 



difference among them. The significance level α is set to 0.05. The hypotheses 

tested are: 

H0: µ1 = µ2= µ3= µ4     H1: µ1 ≠ µ2 ≠ µ3≠ µ4 

P value found was 8.73E-09, which was less than the significance level 0.05. 

The null hypothesis was rejected, which means there was significant difference 

among the effort of the selected dynamic, discarded dynamic, static and two hand 

dynamic gesture populations. Also, it was found that there was significant 

difference in the effort required between the selected dynamic gestures and the other 

three gesture groups by applying t-test to each of the two populations. By choosing 

the null hypothesis as H10 and the alternative hypothesis as H11:  

H10: µ1 = µi     H11: µ1 ≠ µi 

where j = 2, 3, 4. The p value found were 8.19E-05, 2.61E-09 and 3.15E-05, which 

were less than the significance level 0.05. These indicated that there were 

significances of effort between the selected dynamic gestures and the other three 

gesture groups.  

7.2 Heuristics 

According to (Kortum, 2008), and the scored rankings on the Borg scale, the 

following heuristics were found to guide the lexicon design process. 

(1) Select gestures that do not strain the muscles. 

(2) Select gestures that do not require much outward elbow joint extension. 

(3) Select gestures that do not require much outward shoulder joint extension. 

(4) Select gestures that avoid outer positions. 

(5) Select dynamic gestures instead of static gestures. 

(6) Select vertical plane gestures where hands’ extension is avoided. 

(7) Relaxed neutral position is in the middle between outer positions. 

(8) Select gestures that do not require wrist joint extension caused by hand 

rotation. 

7.3 Gesture recognition and robot control 

The eight-gesture lexicon for the system was tested by nine users, which 

resulted in a recognition accuracy of about 90.36% on average for all the gestures. 

The Turtlebot robot was controlled to deliver instruments from place A to B. Figure 

8 shows a sequence of the Kinect view from the Turtlebot. The map for the lab and 

the trajectories of the robot for both discrete mode control (red solid line) and 

continuous mode control (blue dash line) are shown in Figure 9. 

 

Figure 8  Turtlebot robot kinect view 



 

Figure 9  Map of the lab and the robot trajectories 

8 CONCLUSIONS 

In this paper, a hand gesture lexicon was designed for people with upper 

extremity mobility impairments. It was shown to require low physical effort based 

on subjective rankings made on a Borg scale. The heuristics for selecting 

appropriate gesture lexicons was outlined considering physical and ergonomic 

constraints. It was found that it is better to select dynamic vertical plane gestures 

instead of static gestures. In addition, the gestures within the lexicon must not 

require much outward wrist, elbow or shoulder joint extension. A gesture-based 

recognition system utilizing this eight-gesture lexicon was tested by nine users and 

resulted in a recognition accuracy of about 90.36%. The lexicon was validated in a 

task involving a service robot, which was controlled in a lab environment to deliver 

laboratory instruments. Two of the gestures in the lexicon were not always 

recognized due to the fact that the motion models used for those gestures were 

similar to other gestures in the lexicon. Future work includes developing more 

robust recognition algorithms based on Bayesian belief networks.  
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